Exact and Approximate Algorithms for Finding k-Shortest Paths with Limited Overlap

Theodoros Chondrogiannis\(^1\) Panagiotis Bouros\(^2\) Johann Gamper\(^1\) Ulf Leser\(^3\)

\(^1\)Free University of Bozen-Bolzano, Italy \(^2\)Aarhus University, Denmark \(^3\)Humboldt-Universität zu Berlin, Germany

MOTIVATION

Finding multiple short yet different routes between two locations in a road network is a problem with various real-world applications:
- Commercial Route Planners
- Evacuation planning
- Humanitarian aid

k-SPwLO PROBLEM

Given a source \(s\) and a target \(t\), the **k-SPwLO** is a set of \(k\) paths from \(s\) to \(t\), sorted by length in increasing order, such that:

(a) the set includes the shortest path \(p_0(s,t)\),
(b) every path is dissimilar to its predecessors w.r.t. a similarity threshold \(\theta\),
(c) all \(k\) paths are as short as possible.

EXACT ALGORITHM

- **MultiPass**
 - Traverses the road network \(k-1\) times
 - Restarts the expansion after each alternative path is found
 - Employs two powerful pruning criteria

APPROXIMATE ALGORITHMS

- **OnePass**
 - Traverses the road network once
 - Prunes paths with both PC1 and PC2
 - Does not guarantee that the exact solution will be found

- **ESX (Edge Subset Exclusion)**
 - Iteratively removes edges from the road network that lie on some already computed alternative path
 - Computes the shortest path on the updated graph
 - Continues until a sufficiently dissimilar path is found

EXPERIMENTAL EVALUATION

- **MultiPass**
 - Computes the optimal result but is practical only for small road networks

- **OnePass**
 - Good approximation and practical for larger road networks than MultiPass

- **ESX**
 - Less accurate but practical even for large road networks and large values of \(k\)

SUMMARY
